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Abstract

An imaging algorithm is presented based on the standard assumption that
the total scattered field can be separated into an elastic component with
monopole like dependence and an inertial component with a dipole like
dependence.  The resulting inversion generates two separate image maps
corresponding to the monopole and dipole terms of the forward model.
The complexity of imaging flaws and defects in layered elastic media is
further compounded by the existence of high contrast gradients in either
sound speed and/or density from layer to layer.  To compensate for these
gradients, we have incorporated Fermat’s method of least time into our
forward model to determine the appropriate delays between individual
source-receiver pairs.  Preliminary numerical and experimental results are
in good agreement with each other.
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1 Introduction

Typically, a tomographic reconstruction is derived from a series of projections,
where a projection is defined as the integral of the image in the direction specified by that
angle. Experimentally, this is usually obtained by systematically measuring the
transmitted or reflected energies from the object, as it is insonified through a series of
angular directions defined by the source-receiver pair [1]. Traditional methods of
acoustic/seismic tomography rely on algorithms that can generate a two-dimensional
velocity map from a set of line integrals representing the travel time of numerous rays
throughout the medium of interest [2,3]. To that end, most straight-ray backprojection
algorithms yield single valued reconstructions of either the medium velocity, density, or
attenuation, depending on the forward propagation model used and the nature of the
probing system [1].  Recently, techniques have been developed to invert acoustic data
sets and reconstruct either, density or compressibility maps under specified conditions in
tissue [4,5].

The motivation for our development is driven by the need to detect and image
flaws in multilayered structures. Application of ultrasonic reflection tomography to non-
destructive evaluation of materials is possible, owing to the fact that flaws generally
result in weak and localized signals. Thus, the Born approximation can be applied to the
scattered field [6]. Our algorithm is based on implementing monopole and dipole
expansion terms of a long wavelength scattering result. The implementation we will
present generates dual valued reconstructions of the image space, corresponding to the
monopole and dipole dependences in the forward model. The approximation of our
forward model also admits a single scattering event from a point scatterer, which
provides a method for estimating changes in refractive index.   The algorithm permits the
selection of arbitrary source and receiver locations, thus it can be applied to numerous
multistatic data collection geometries and procedures.   It can be implemented in either
the time or frequency domains but yields better results in the former where all the
frequencies are naturally included and do not have to be combined in a synthetic manner
after reconstruction.

In most non-destructive evaluation (NDE) problems however, there can be large
contrast differences in the acoustic impedances between adjacent layers resulting in
significant refraction effects. Various backprojection algorithms have been developed to
account for ray bending due to gradients in the background velocity distribution [7]. The
significant difference with our application is that a considerable amount of prior
knowledge of the internal structure of the part is known: either through blueprints or
some other type of manufacturing specification. Thus, for NDE purposes, it is reasonable
to assume that the material properties and geometry of the individual layers are well
known and understood. In this case, the inverse wave imaging is used to identify
deviations, defects, and or flaws in the assembled part.

In the following section, we will present a derivation of our multi-view, time-
domain imaging tomography algorithm (MTDI). This is followed by a generalized
correction to the forward model for highly refractive media using Fermat’s  principle of
least time [8]. The section ends with an application of the corrected forward model to a
representative two-layer aluminum-copper part.  A description of the simulation and
experiment are given in Section 3.  Finally, results for simulated and experimental
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reconstructions of the two-layered part are presented in Section 4. Conclusions are
discussed in Section 5.

2 Theoretical Formulation

2.1 Derivation of the forward model

From Morse and Ingard [9] equations 8.2.15 and 8.2.19, the long wavelength
approximation of the scattered field due to a point scatter is

€ 

ψ scat (Rm
r ,Rn

t , r,ω) =
1
3
Φ ω( ) e

ikrm

rm
k2a3 γκ +γρcosθmn(r)[ ] ,  (1)

where

€ 

ψ scat (Rm
r ,Rn

t ,r,ω) is the measured scattered field at the m-th receiver
located at Rr

m from the n-th source located at Rt
n;

r is the point scatter location;

€ 

rm ≡ r − Rm
r is the distance from the point scatter to the m-th receiver;

ω is the narrow band frequency;

€ 

k ≡ω c  is the narrow band wavenumber;
Φ(ω) is the spectrum of the incident pulse;

€ 

γκ ≡κ s −κo κo  is the relative compressibility ratio;

€ 

γρ ≡ 3(ρs −ρo ) (2ρs +ρo )  is the relative density ratio;

€ 

θmn  is the scattering angle;
a is the point scattering size.

The scattering geometry is presented in Figure 1. The compressibility and density
of the scatterer are given as κs and ρs; and for the background as, κo and ρo respectively.

We obtain the time domain representation of the scattered field via,

€ 

ψ scat (Rm
r ,Rn

t , r,t) =
a3

3c2rm 2π( )
γκ +γρcosθmn(r)[ ] dωω2Φ ω( )

−∞

∞

∫ eiωrm ce−iωt . (2)

The inverse Fourier transform yields
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1
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−∞

∞

∫ eiωrm ce−iωt =
1
2π
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−∞

∞

∫ d2
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€ 

=
1
2π

d2

dt 2
dωΦ ω( )

−∞

∞

∫ e−i t−rm c( )ω ,     

€ 

=
1
2π

d2

dt 2
φ t − rm c( ),                                (3)

resulting in

€ 

ψ scat (Rm
r ,Rn

t , r,t) =
a3

6πc2rm
γκ +γρcosθmn(r)[ ] d

2

dt 2
φ t − rm c( ), (4)
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as our forward model where φ(t) is the time-domain pulse.
We consider the arbitrary probing system of Figure 1. A transmitter located at Rt

n
launches an incident field that propagates into the medium. The field interacts with a
point scatter located at r, and the scattered field is measured at a receiver located at Rr

m.
The scattering angle is θ. In succession, each source transmitter is excited and the
scattered field is measured at all of the receivers.1 Thus, at each receiver, m, we measure
the scattered field time series from source, n, to a scatterer located at r. These time series
are represented by ψ(Rr

m, Rt
n , r, t).

In the case where all sources are excited simultaneously, we can view Eq. 4 as
representing the multistatic scattering matrix and express it as

€ 

ψmn(r) =
1
rm

ˆ γ κ + ˆ γ ρcosθmn(r)[ ] d
2

dt 2 φ t − rm c( ) , (5)

where the time dependence is implicit but we maintain the spatial dependence to indicate
the data are due to a point scatterer at r, and we have introduced the modified
compressibility and density relative ratios, defined as

€ 

ˆ γ ρ ≡
a3

6πc2 γρ  , (6)

€ 

ˆ γ κ ≡
a3

6πc2 γκ  . (7)

Given a complete set of measurements in the multistatic data matrix, we wish to
solve for the modified relative compressibility and relative density ratios. Equation 5
represents a set of Nc=Nsrc x Nrcv measurements for the two unknowns where Nsrc is the
number of transmitters and Nrcv is the number of receivers. In matrix form, Eqn. 5 reads
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1 r1 cosθ1,2 (r) r1
M M

1 r1 cosθ1,N t
(r) r1
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, (8)

where the scattering angle is given by

                                                  
1 Technically, the total field is measured. The scattered field is obtained from the difference between the
total field and the incident field.
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€ 

cosθmn(r ) ≡ −
r − Rm

r( ) ⋅ Rnt − r( )
r − Rm

r Rn
t − r

 . (9)

Eqn. 8 is of the form

€ 

Ag = k  , (10)

where A,  is a Ncx2 matrix of 1/rm and cosine terms of the scattering angle, g is the 2x1
vector of unknown modified relative compressibility and relative density ratios, and k is
the Nc x 1 vector of values from the multistatic data matrix.

The ψmn(r) values are obtained in one of two different methods. The first method,
the time domain method, is to compute the total travel time, using the background
velocity, from the source to the scatterer, and then from the scatterer to the receiver, and
select the time series value at that time. One can optionally add to this travel time a delay
to the pulse maximum. For example, if φ(t) is the transmitted pulse, and Td is the time to
the pulse maximum defined as

€ 

Td ≡ argmax
t

φ t( )  , (11)

then ψmn(r) is the value of the received time series evaluated at

€ 

tmn r( ) ≡ Rnt − r so + r − Rm
r so +Td  (12)

where so, is the slowness of the background medium defined as so =1/νo. where νo is the
bulk velocity of the background media. The second method is a frequency domain
method in which the Fourier transform of the multistatic data matrix series is computed,
and ψmn(r) is set equal to the value of the Fourier series peak at the frequency multiplied
by a phase delay given by e±itm,n(r)ω  where the ± depends upon the sign of the forward
Fourier transform.

In this development, we have chosen the time domain method, Eqn. 10 is solved
by

€ 

g = A†A( )
−1
A†k. 

Explicitly, we have,

€ 

A†A =

Nt
1
rm
2

mn
∑ cosθmn(r)

rm
2

mn
∑

cosθmn(r)
rm
2

mn
∑ cosθmn(r)

rm

 

 
 

 

 
 

2
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∑

 

 

 
 
 
 

 

 

 
 
 
 

 , (13)
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rmmn
∑

 

 

 
 
 
 

 

 

 
 
 
 

.  (14)

Thus
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where the determinant is
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Solving for g, we find,
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.      (18)

Finally,

€ 

κ s = 1+ ˆ γ κ( )κo  , (19)
and

€ 

ρs =
3+ ˆ γ ρ

2 ˆ γ ρ − 3( )
ρo . (20)
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2.2   Generalize the forward model to a variable background velocity

The analysis thus far has assumed a constant slowness s(r) = so throughout the
imaged region. Implicit in this assumption is that the incident and scattered acoustic
fields propagate following straight ray paths from transmitter location Rt

n to the scatterer
at r and from the scatterer to the receiver location Rr

m.  Depending upon the severity of
the spatial velocity gradients, this assumption is often a very poor approximation.  In this
section, we will present a correction to the forward model given in Eqn. 4 that utilizes
Fermat’s principle of least time.

Fermat’s principle of least time selects the ray that minimizes the travel time
between a specified transmitter location, Rt

n to a receiver located at Rr
m.  Let us consider

an arbitrary path P denoted in this case by the vectors (Rt
n – r) and (r - Rr

m) that connects
a given source-receiver pair in Figure 1. The travel time for this particular source receiver
pair is denoted as

€ 

τ P s( ) = s(x)
P
∫ dlP  , (21)

with x describing the vector connecting the source-receiver pair through the scatterer at r
and dlP corresponding to an infinitesimal distance along path P.  Fermat’s principle states
that the correct ray path is one that connects the source receiver pair with the minimum
travel time. Stated another way, Fermat’s principle stipulates that the travel time integral
is stationary with respect to variations in the ray path [10].  Thus, from Figure 1 the
travel time between a given source-receiver pair is

€ 

tm,n
f = min

P1∈Paths
s(x)

P1

∫ dlP1
 
 
 

  

 
 
 

  
+ min

P2∈Paths
s(x)

P2

∫ dlP2
 
 
 

  

 
 
 

  
,   (22)

where P1 is the path from transmitter Rt
n to scattering location r, P2 is the path from the

scattering location to the receiver Rr
m. The notation, Pi ∈ paths, means that P is a member

of the set of possible paths connecting the source receiver pair. We will now apply this
generalized formulation to a two-dimensional planar problem.

2.3 Two-dimensional aluminum-copper planar structure

Consider the planar multilayer geometry shown in Figure 2.  We assume that the
aperture of the imaging array is located along the upper surface of layer 1, and that at
each sensor location the transducer can act as either a transmitter or as a receiver of
acoustic energy.  As before, n, is the index number for a defined set of transmitters (n=
1,Nsrc) and m, is the index number for a defined set of receivers (m = 1,Nrcv).  The planar
geometry gives rise to the following set of functional equations. The first relates the time
of flight from a transmitter location [Rt

x,n, Rt
y,n]  to a scatterer at location (xi,yi)
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€ 

tn
f xi , yi( ) = min

η∈Paths

η− Rt
x,n( )2 + lAl − R

t
y,n( )2( )

1
2

cAl
+
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1
2
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,        (23)

and the second relates the time of flight from the scatterer at, (xi,yi), to a receiver at
location, [Rr

x,m Rr
y,m]

€ 

tm
f xi , yi( ) = min

σ∈Paths

xi −σ( )2 + yi − lAl( )2( )
1
2

cCu
+

lAl − R
r
y,m( )2 + Rr

x,m −σ( )2( )
1
2

cAl

 

 
 

 
 

 

 
 

 
 

.       (24)

Here the notation, η ∈ paths refers to the set of all possible ray intersections from a
transmitter location [Rt

x,n, Rt
y,n], through the interface at lAl to the location (xi,yj).

Similarly, σ  ∈ paths refers to the set of all possible ray intersections from the location
(xi,yj), through the interface at lAl to a receiver located at [Rr

x,m, Rr
y,m]. The minimum total

time between the source to the scattering location and then to the receiver is simply

€ 

tmn
f xi , yi( ) = tn

f xi , yi( ) + tm
f xi , yi( ) +Td  . (25)

Equation 25 defines the variable velocity minimum travel time for our planar geometry,
where the similarities to Eq 12 are apparent.

3     Experimental setup and numerical simulation

The experimental data were collected using a computer controlled 32-channel pulser-
receiver data acquisition system connected to a single 32-element 5MHz ultrasonic array
[11].  The system has the capability of transmiting arbitrary waveforms and receiving on
all channels. The array was mounted on the upper surface of two-layer aluminum-copper
test part. The aluminum layer was 13mm thick; the copper layer was 9 mm thick. A
“defect” in the form a 1 mm hole was drilled into the copper layer such that the axis of
the hole was parallel with the planar layer interfaces.  A schematic of the test part and the
array are shown in Figure 3. Data sets were recorded in a full multistatic process whereby
each source sequentially ensonified the medium with a broadband pulse centered at 5
MHz and the corresponding scattered field was recorded on all of the receivers.
Following this procedure, one would obtain a three dimensional data set comprising the
sampled time record for all possible source and receiver locations.  Mathematically this
corresponds to data matrix A of the form Nsrc x Nrcv x Nt where Nt, is the number of
samples in the voltage timeform, Nsrc are the number of transmitters and, Nrcv, is the
number of receivers.

In addition to the experiment, a two-dimensional numerical simulation was
performed to generate additional data sets for comparison.  The simulation results were
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obtained using E3D, an explicit finite-difference time domain code developed at
Lawrence Livermore National Laboratory [12-17]. The code can simulate full wave
scattering phenomena in elastic or coupled fluid-elastic systems in either two or three
dimensions. The required input parameters are a longitudinal velocity distribution, a
transverse velocity distribution, and a density distribution. The model is comprised of
four layers: air, aluminum, copper and air.  The “defect” is an air filled circular region
1mm in diameter in the copper layer. The numerical region and the material properties
are listed in Figure 2.

Simulations and the experiments used the same Gaussian windowed pulse shape:

€ 

u(t) = sin(ωot)e
−t2 (2σ 2 )   (26)

where ωo ≡ 2πfo, σ ≡ Ncyc/ωo and Ncyc is the number of cycles in the pulse. We used fo= 5
MHz and Ncyc=5 cycles.  For the experiment, this pulse is actually defined in terms of
voltage. However, in the simulation, it is defined as a normal stress applied at a source
location.  A spectral comparison conducted on an experimental pulse measured in a
simple pulse-echo geometry, and the corresponding simulated pressure pulse reveal only
slight differences in their respective frequency content. We can assert, that the voltage-to-
pressure transfer function is constant over the bandwidth of the applied pulse.  Thus,
normalized images created using numerical data and experimental data can be compared
directly.  All the experimental measurements were taken using a 32 channel RDTech
TRM system [11].  This custom hardware-software system allows for the individual
control of each transducer element with arbitrary transmit pulse capabilities. The
transmit-receive array was designed to operate at 5MHz with an element to element pitch
of approximately 1mm.  The element height is 10mm.  Voltage-time records for each
receive element can easily be recorded and stored as RF waveforms on the host PC.
Reconstruction algorithms were conducted on a separate computer.

The reconstruction process requires a multistatic data set representing the
scattered field in the elastic region of interest. Multistatic data refers to the process in
which one element of the array acts a transmitter to ensonify the test region. The return
time-series signals (echoes) are subsequently recorded on all of the elements; this process
is repeated at all of the transmit-receive locations.  To that end, we began by recording a
background data set. See Figure 3. The background data can be obtained from an
identical part, or a region on the same part, that is free of defects2.  For our purposes, the
background data were obtained by locating the transducer array over a region of the
aluminum-copper plate far enough away from the hole to eliminate any reflections. A
complete multistatic background data set was recorded.  The array was then moved to a
region over the flaw, as shown in Figure 3, and a second complete multistatic data set
was recorded. This data set is referred to as the object data set.  The complete multistatic
scattered data set is then the difference between the object data set and the background
data set.   In a similar manner, numerical simulations of the multistatic data were
generated for the background (no flaw) and object (flaw present) data sets.

                                                  
2 Recall, that because we are applying this algorithm as a non-destructive imaging technique we have access to a priori
knowledge of the system without defects either through initial inspections or mechanical specifications.
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4     Results

The resulting reconstructions using simulated and experimental data are shown in Figures
4 and 5 respectively.   The upper figure represents a map of the modified relative
compressibility ratio, while the lower figure represents a map of the modified relative
density ratio, (see Eq. 6 and 7) for the imaged region.  The actual location of the
aluminum-copper interface and the flaw are included for reference.  The lambda metric is
the wavelength in the aluminum layer at fo = 5 MHz.

The reconstruction of the simulated data clearly shows the flaw correctly located
in the copper layer.  The moderate haloing effect around the hole is a result of diffraction
and shear wave effects in the immediate region surrounding the hole.  The artifacts to the
far left of the hole are a result of multiple reflections in the scattered field occurring in
the aluminum and copper layers. Even with the subtraction process, which effectively
removes the incident field and its multiples, the scattered field will become more
complex with time reducing the quality of the reconstruction. The present algorithm does
not take into account multi-path scattering effects.  However, if we limit the length of the
time records used for the reconstruction to approximately the time of flight of a return
arrival from the lower copper boundary, then these types of errors can be mitigated.

Reconstructions of the experimental data show a visible flaw, correctly located in
the lower copper layer.  A strong indication of the interface between the aluminum and
copper layers is also present.  In this case the subtraction process did not remove the
incident field completely.  This could result from slight changes between the background
data set and the object data set due to location and bond differences. Note, that this type
of effect could be included into the simulated data.  In the actual part, the bond line
between the aluminum and the copper has a finite thickness of approximately 0.003”
(0.076mm) and with significantly different acoustic impedance (Zepoxy = 3.2 mks Rayles,
verses ZAl = 17 mks Rayles and ZCu = 42 mks Rayles).  A finite bond thickness is not
accounted for in the reconstruction model.  The experimental image contains more
artifacts than the simulated image, owing to the systematic problems associated with
subtracting the background data from the object data, random noise in the recorded data
and part variability.  Even with these issues, the images clearly show accurate
localization and acceptable contrast of the flaw within the part geometry.

 6     Conclusions

An algorithm has been developed for imaging and characterization of elastic structures
that have high contrast gradients in either compressibility (velocity) and or density.
Applying the standard monopole and dipole expansion terms of a long wavelength
acoustic scattering approximation, in conjunction with a concise matrix approach, we
have obtained separate image maps corresponding to these monopole and dipole terms.
A bent ray correction method utilizing Fermat’s method of least time is incorporated into
the forward model to accommodate ray-bending effects in the layered system. Future
work will be directed towards developing a quantitative version of this algorithm where
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by the inversion generates reconstructions that are directly proportional to the mediums
density and compressibility.
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Figure 1. Arbitrary wave probing system where the sensor locations are denoted as
⊗.  Τhe slowness distribution for the medium is given by s(r) = 1/ν(r), where ν(r) is the
corresponding bulk velocity distribution of the background medium.
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Figure 2.  The planar multilayered system. The grid locations correspond to the image
reconstruction region.  The finite difference time domain grid is much finer and not
shown. The longitudinal sound speed and density of the system are defined where, cAl =
6.32mm/us and ρAl = 2.7g/cm3 are the longitudinal sound speed and density of aluminum
respectively; and cCu = 4.66 mm/us, ρCu = 8.98 g/cm3, are the longitudinal sound speed
and density of copper. The longitudinal sound speed and density of air is cair= 0.344
mm/us, ρair= 0.012 gm/cm3.
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Figure 3.  Experimental setup and multi-channel data acquisition hardware [11]. Two
separate multistatic data sets are obtained, a background scan and then an object scan.
The background scan location is chosen in a region free of flaws. The object scan
location is chosen such that the flaw is insonified by the imaging array.
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Figure. 4   Reconstructions of simulated data using the MTDI algorithm. Limited view
aperture. The aluminum-copper interface and location of the hole are superimposed on
the image for reference.  The images clearly show the flaw correctly located in the copper
layer. The λ metric is the wavelength of the field in the top aluminum layer at fo = 5MHz.
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Figure 5:  Reconstructions of experimental data using the MTDI algorithm. Limited view
aperture.  The aluminum-copper interface and location of the hole are superimposed on
the image. A strong indication of the interface between the aluminum and copper layers
is also present.  In this case the subtraction process did not remove the incident field
completely.  This could result from slight changes between the background data set and
the object data set due to location and bond differences. The λ metric is the wavelength
of the field in the top aluminum layer at fo = 5MHz.


